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Theoretical expressions are derived for the steady-state frequency response of a supported 
thermocouple wire. In particular, the effects of axial heat conduction are demonstrated for both 
a supported one material wire and a two material wire with unequal material properties across 
the junction. For the case of a one material supported wire, an exact solution is derived which 
compares favorably with an approximate expression that only matches temperatures at the 
support junction. Moreover, for the case of a two material supported wire, an analytical 
expression is derived that closely correlates numerical results. 

1. INTRODUCTION 

The evaluation of jet engine performance and funda- 
mental studies of combustion phenomena depend on the 
measurement of turbulent fluctuating temperatures of the 
gas within the engine.’ Historically, these temperatures 
have been measured with thermocouples. The design of a 
thermocouple represents a compromise between accuracy, 
ruggedness and rapidity of response. 

For example, the measurement of fluctuating temper- 
atures in the high speed exhaust of a gas turbine engine 
combustor is required to characterize the local gas density 
gradients or convective heat transfer.’ Although thermo- 
couples are suitable for the measurement of high frequency 
temperature fluctuations ( < 1 kHz) in a flowing gas or 
liquid, the measured signal must be compensated since the 
frequency of the time dependent fluid temperature is nor- 
mally much higher than the natural frequency of the ther- 
mocouple probe.3 Moreover, the amplitude and phase an- 
gle of the thermocouple response may be attenuated by 
axial heat conduction for rugged thermocouples of finite 
length.4-7 

In the present study, the theoretical steady-state fre- 
quency response of a supported thermocouple wire has 
been calculated to include the effects of axial heat conduc- 
tion. These solutions, that represent an extension of earlier 
work,’ are derived for both a supported thermocouple wire 
with equal physical properties across the junction (e.g., 
roughly the same thermoconductivity, etc.) and a sup- 
ported wire with unequal properties across the junction. 
Solutions are presented in the form of the amplitude ratio 
and phase angle for both cases and these results have been 
compared favorably with experimental data.’ 

II. THEORY FOR ONE IMATERiAL THERMOCOUPLE 

The steady-state frequency response of a thermocouple 
wire will be developed with the following assumptions: (a) 
the amplitude of the fluctuating fluid temperature is small 
relative to the mean absolute temperature, (b) the thermo- 
couple dimensions are small relative to the size of the tur- 

bulent eddies or enclosure dimensions, (cf radial temper- 
ature gradients in a wire cross section can be neglected, 
and (d) radiative heat transfer can be neglected relative to 
conduction and convection. 

In this section the geometry of Fig. 1 is considered 
where the material properties of thermal conductivity k, 
specific heat c and wire density p are assumed to be equal 
on both sides of the thermocouple junction. If the probe is 
immersed in a flowing fluid, the expression for the local 
conservation of energy in the thermocouple wire becomes3 

aT, d2T, 412 
at=” -~QT+- tT,-TJ, PCD 

(1) 

where a! = k/pc is the thermal diflusivity of the wire, T8 is 
the ambient fluid temperature, h is the convective heat 
transfer coefficient, D is the wire diameter and T, is the 
local wire temperature measured along the axis at a dis- 
tance x from the centerline (Fig. 1. ) 

The wire and fluid temperatures are measured relative 
to the mean fluid temperature TO. The ambient fluid tem- 
perature is taken to be a mean temperature together with a 
sinusoidal varying deviation from the mean, 

2-J t) = TO+ Tf e’“‘, (2) 

where w is the angular frequency of the ambient tempera- 
ture. Since Eq. ( 1 f is linear, we now seek a solution for the 
local wire temperature of the form’ 

T,= TO+T,(x)ei”‘. (3) 

Referencing all temperatures with respect to the mean gas 
temperature To and normalizing with respect to the am- 
plitude of the fluctuating ambient fluid temperature Tf, one 
defines a local normalized steady-state frequency response 
T(x) for the thermocouple wire of the form 

T,- TO T,(x)t+” 
-= 

Tf Tf 
=T(x)e’“*. 

Substituting Eqs. f 2) and (3) into Eq. ( 1 ), one obtains 
an ordinary differential equation of the form 

3236 Rev. Sci. Instrum. 64 (ll), Nov 1993 0034~6746/93/64(11)/3236/9/$6.00 Q 1993 American Institute of Physics 3236 

Downloaded 24 Mar 2009 to 128.156.10.80. Redistribution subject to AIP license or copyright; see http://rsi.aip.org/rsi/copyright.jsp



Fluid Flow 

” 

I 

T, 

D, r 

unction 

4 1) 0 TO 
t I 

FIG. 1. Schematic of one material supported wire. 

(5) 

where T=T(x) is the frequency response and the vector 
notation will be dropped for simplicity. Thus, for the ge- 
ometry of Fig. 1, one seeks a solution to the nonhomoge- 
neous linear second order differential equation for the de- 
pendent variable T  of the form* 

yT”-G(o)T=-1. (6) 

The general solution to Eq. (6) can be written in the 
form9 

T(x) =A sinh qx+ B cash qx+&, (7) 

where the parameters in Eqs. (5) and (6) are defmed as 

4il a  
%=pcD t Y’o, I (8) 

while in Eq. (7) the constants A and B are complex, 
l/G(w) represents the particular solution and the param- 
eter 

q= 

A Approximate solution 

Assuming that the material properties are constant 
across the junction and that the wire diameters are D, and 
D, in regions 1 and 2, respectively, Eq. (6) is subject to the 
boundary conditions 

T~W=T,W=Ta, (94 

T,(Z+L)=O. (9b) 

In this case, we seek a simple approximate solution that 
neglects the heat transfer at the interface between regions 1 
and 2 at x= ~1 where the parameters in Eqs. (5) and (6) 
are defined in terms of the wire diameters in each region. A 
similar approach will be used in a later section to obtain an 
approximate solution for the case in which the material 
properties of the two elements of the thermocouple are 
distinctly different. Hence, in region 1 

4hl a  
% ‘pcDl* Y1=z, (10) 
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where wt is the natural frequency of the wire in region 1 of 
Fig. 1. 

The solution to F.q. (6) for the one material wire on 
both sides of the junction in region 1 can be written in the 
form 

Tl(x) =AI sinh qlx+ B1 cash qlx+&. (11) 

Substituting x = f I in Eq. ( 11) , the boundary conditions 
in Eq. (9) yield values for the constants 

1 
A1=O, B1=p 

cash qlZ 

Thus, one obtains a steady-state temperature distribution 
for the wire in region 1 of Fig. 1  in the form 

T,(x)=; (‘_s)+T.(a). (13) 

We  now seek a solution in region 2 that satisfies the 
boundary conditions of Eq. (9). Since the temperature is 
symmetric about x=0, it is convenient to define a contin- 
uous steady-state temperature distribution for the large 
wire of diameter D2 over the entire region - (I+ L) <x( (I 
+L) or 

cash qzx 

cash q2(Z+ L) ’ (14) 

Since T,= T2( I), one obtains the boundary value from Eq. 
(14), 

cash q2Z 

cash q2(Z+ L) ’ (15) 

Substituting the value for T, at x= Z  of Eq. ( 15) into 
Eq. ( 13 ) , the approximate temperature distribution in re- 
gion 1 becomes 

T,(x)=; (1-s) 
cash q2Z cash qlx 

cash q2(Z+ L) cash qlZ * (16) 

Thus, the approximate frequency response at the thermo- 
couple junction (x=0) for the one material wire becomes 

T,(O)=$ (I----&~) 
cash q2Z 1 

cash q2(Z+ L) cash qlZ ’ (17) 

The steady-state behavior at the thermocouple junc- 
tion x = 0 is normally characterized graphically in the form 

T(0) =  1  T(0) le*, (18) 

where 1 T(0) [ is the amplitude ratio and CT, is the phase 
angle. In the latter case, the phase angle in degrees is 

, (19) 
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where Im[T(O)] and Re[T(O)] are the imaginary and real 
parts of T(O), respectively. 

B. Exact solution 
If the boundary conditions listed in Eq. (9) include 

equal rates of conductive heat transfer at the interface be- 
tween the thermocouple and support wires at x= AZ, the 
exact solution is subject to 

T,U)=T,U), (204 

dT1W dT,W kD+-=k@+p (2Ob) 

T2(Z+L)=0. (2Oc) 

Since the solution to Eq. (6) in region 1 is of the form 

T,(x)=A,sinhqlx+BIcoshqlx+$ 
G 

f21) 

where by symmetry T,(Z) = T,( -I), one obtains A1=O. 
Thus, the form of the solution in region 1 becomes 

T,(x) = B1 cash qlx+&. (22) 

For region 2, where the spatial coordinate is in the range 
Z<x< (I+ L), it is convenient to write 

T,(x) =A2 sinh q2(Z+L-x) + B2 cash q2(Z+ L-x) 

t--t* 
G2 

(23) 

From the boundary condition T,(Z+ L) =0, one obtains 
B2= - l/G2 or the form of the solution in region 2 be- 
comes 

T,(x) =A2 sinh q,(Z+L-x) 

+& [1-coshq2(Z+L-xf]. (24) 

Substituting Eqs. (22) and (23) into boundary condi- 
tion (20a), one obtains a linear equation for the constants 
BI, 4 or 

B, cash q,Z-A2 sinh q2L=& [ 1 -cash q2L] -& . (25) 

Similarly, substituting Eqs. (22) and (23) into boundary 
condition (2Ob), one obtains a second linear equation for 
4, -4,, or 

BIQ sinh q1Z+A2 cash q2L=$ sinh q2L, 

where the complex constant Q is defined as 

(26) 

(271 

Solving Eqs. (25) and (26) for B, and A,, one obtains 
the determinate system 
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FIG. 2. Schematic of two material supported wire. 

; (I-coshq,L)-; -sinh q2L 

1 
- sinh q2L 

3x= 
G2 

cash q2L 

DET (28) 

and 

cash q,Z ; (I-coshq2L)--$ 

Q sinh qlZ 
1 

- sinh q2 L 
1 f72 

A2= DET t (291 

where the determinate in the denominator is equal to 

DET=cosh qlZ cash q2L+ Q sinh qlZ sinh q2L. (301 

Thus, solving for the constants B, and A, from Eqs. (28) 
and (29) and substituting B, into Eq. (22), one obtains an 
exact expression for the steady-state temperature distribu- 
tion in the form 

-& (cash q,L- 1 f -& cash q2L cash qlx 
TI(x) = cash q,Z cash q2L + Q sinh q,Z sinh q2 L 

+-F GI ’ 
Thus, the steady-state frequency response at the thermo- 
couple junction x=0 becomes 

T(O) = 
-& (coshq2L-l)-&coshq2L 1 

cash q,f cash q& + Q sinh qlZ sinh q2L ‘q 
(32) 

III. THEORY FOR TWO MATERIAL THERMOCOWPLE 

Certain types of thermocouples have distinctly differ- 
ent material properties across the junction. For example, a 
copper-constantan thermocouple has a thermal conductiv- 
ity on the copper side that is more than an order of mag- 
nitude larger than constantan. In this case, the expressions 
developed in the previous section for the frequency re- 
sponse are in error since unequal material properties would 
provide an asymmetric temperature profile. 

Referring to Fig. 2, the thermocouple schematic now 
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has four distinct regions that are distinguished by either 
different wire diameters or physical properties. For exam- 
ple, on the left-hand side of the schematic of Fig. 1 the 
thermal conductivity, density and specific heat have the 
values kit pl, and cl, respectively, while on the right-hand 
side of the schematic the material properties are Zc,, p2, 
and c,. 

A. Temperature distribution for small wire 

Since the differential equation describing the steady- 
state frequency response Eq. (6) applies to all regions of 
the schematic of Fig. 1, the steady-state frequency response 
in regions 1 and 2 are given, respectively, by the expres- 
f3iOIlS 

TI(x) =A1 sinh qlx+B1 cash q,+&, 

1 
T2(x) =A2 sinh qgc+B2 wsh qgc+-. 

G2 
(34) 

Here, the four constants designated by A and B in Eqs. 
(33) and (34) are determined by the four boundary con- 
ditiOIl!G 

T,(O) =T,(O), (354 

k gZdwo 
1 I--&-= 

k ,,dW) 
21 & * (35b) 

T1(--l)=Ta, (35c) 

T2(z)=Tb. (35d) 

Solving for the four values of the constants designated 
by A and B in Eqs. ( 33 ) and ( 34)) one obtains an expres- 
sion for the steady-state temperature distribution in region 
1 of the form 

x [ Qt cash q,x sinh qzf 

-sinh qlx cash q2Z] 

and in region 2 

W-4 

-Qt sinh q,(Z-x) 

-(T,-$]+(Ta-&)[coshqgsinhqiZ 

+Q,coshqrZsinhq~] 

Here, it should be noted that the two functions above can 
be obtained from each other by interchanging the sub- 
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scripts 1 and 2, the values a and b and by changing the sign 
of x. Also, in Eqs. (36a) and (36b) the parameters 

Al = Q, cash qlZ sinh q2Z+cosh q2Z sinh qlZ, 

and 

Q kl9, -- 
‘--k292 - 

8. Temperature distribution ‘for large wire 

In this section a solution is sought for the large wire in 
regions 3 and 4 of the schematic of Fig. 2. To simplify the 
analysis, a continuous solution is derived for the steady- 
state frequency response over the entire region -(I 
+ L) <x< (I+ L) . This solution must satisfy the boundary 
conditions 

7-3W =7-4(O), (374 

(3%) 

Td-Z-L)=o, (37c) 

T4(Z+ L) =O. (37d) 

In principle, it is now possible to derive a continuous 
solution for T3(x) over the range - (I+ L) <x<O and for 
T4(x) over the range O<x<(Z+ L). These solutions are 
obtained from Eqs. (36a) and (36b) by renumbering the 
subscripts 1 -+ 3 and 2-4, redefining the parameters 
Z-Z+ L and setting the boundary conditions T,= Tb=O. 
Moreover, the boundary condition T,= T3( -I) is ob- 
tained from the resulting expression for T,(x) by substi- 
tuting x= -I while the boundary condition Tb= T,(Z). 
Thus, one obtains values for T, ,Tb that appear in Eqs. 
(36a) and (36b) in the form 

To=$+[sinhq3L[ (&$oshq4(Z+L)-&] 

-+ [Q, cash q3Z sinh q4(Z+ L) 

+cosh qJZ+ L)sinh q3Z] 

and 

(38) 

T,=;+[Qssidw,L[ (&&)coshqdZ+L)-;] 

--& [cash q4Z sinh q3(Z+ L) 

Here, the parameters are defined as 

A,=Q,coshqdZ-t-L)sinhq,(z+L) 

+cosh q&Z+ L)sinh q3(z+L) 

Thermocouple wire 

(39) 
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TABLE I. Properties of one material wire (type B). TABLE II. Properties of two material wire. 

Dimensions (cm) Dimensions (cm) 
-I), 4 4101 I L 

0.025 0.05 
0.007@ 0.038 

Average properties of type B 

3.8 

90, =32.9 s-‘. 

0.2 0.35 
0.1 0.2 

Gas properties 

?-,=9(X K 
h&=0.26 
P= 1 atm 

and 

Qs=E. 

C. Frequency response 

The steady-state frequency response for the two mate- 
rial supported thermocouple is obtained from Eq. (36a) or 
(36b) by setting x=0: 

T(0) =’ Q sinh q 1 Ta+-& (cash qll- 1) 
A,[’ ‘( ) 

T,+i Ccosh q$- 1 f 
)I 

, (401 

where T, and T, are given by Eqs. (38) and (39). 
It should be noted that the steady-state frequency re- 

sponse Eq. (40) provides a wire temperature that is con- 
tinuous everywhere and conserves the heat flux at the junc- 
tion x=0. This represents an approximate solution since 
the heat flux at the interface between the large and small 
wires x= 5 I has been neglected. 

IV. RESULTS 

The amplitude ratio and phase angle of the thermocou- 
ple frequency response were plotted graphically for the 
case of a one material wire in the schematic of Fig. 1. In 
this case, average properties of a type B or Pt/6% Rh-Pt/ 
30% Rh were used since the material properties were 
nearly equal across the thermocouple junction. The wire 
dimensions, properties and gas conditions are listed in Ta- 
ble I.” 

The amplitude ratio and phase angle were also plotted 
for a two material thermocouple wire in the schematic of 
Fig. 2. In this case, a type 3 thermocouple described in 
Table I was used in addition to a type T or copper- 
constantan described in Table II.” 

The form of the convective heat transfer coefficient h 
that appears in the computation of the natural frequency 
w, defined in Eq. (8) was determined from the expression3 

Nu=0.485 Re”2 Pr1’3 f 

where Nu( =hD/kf) is the Nusselt number, k, is the ther- 
mal conductivity of the ambient fluid, Pr( =~/a) is the 
Prandl number, and Re f = uD/vf) is the Reynolds number 

Dl 4 

0.0076 0.038 

4/Q I L Air properties 

5 0.1 0.2 To=300 K 
P=¶ atm 

V= 50 m/s 

Properties of type B 

J 
PCcm’X ( 1 

cm2 
a- 

( 1 s 

Pt-6% Rh 
Pt-30% Rh 
Average 

2.73 0.238 
2.86 0.190 
2.8 0.214 

Properties of type T 

J 
pcG2-E ( 1 cm2 

(I- 
( 1 S 

tipper 
Constantan 
Average 

Region 

1 
2 

3.44 
3.48 
3.46 

Wire location 
Type 22 

P&-6% Rh 
Pt-30% Rh 

1.16 
0.067 
0.614 

Type T 

Copper 
Constantan 

of the thermocouple wire. Here, u and vf are the fluid 
velocity and kinematic viscosity, respectively. It should be 
noted that the convective heat transfer coefficient 
h cc 11-“2 and the natural frequency of a thermocouple 
wire for given material properties u, a LfW3j2. 

A. Useful criterion 

The approximate expression for the frequency response 
of a supported one material wire consists of two terms as 
given by E!q. ( 17). The first term represents the exact re- 
sult illustrating the effects of axial heat conduction for a 
one material wire of uniform diameter with no support 
(L=O) as previously derived by Chomiak and 
Niedzialek” and Forney and Fralick.* The first term of Eq. 
(17) is 

TI(O)=~ (l-sechq,!). 
G 

(41) 

Here, the coefficient l/G, represents the first order re- 
sponse for a uniform wire of infinite length (I- CO ) while 
the term sech(q,l) is the correction due to axial heat con- 
duction. 

The second term of Eq. ( 17) is a useful estimate of the 
effect of the support legs on the frequency response. More- 
over, a useful criterion in practice to evaluate the magni- 
tude of the suggested corrections due to axial heat conduc- 
tion can be derived from Eq. (41). One must determine the 
real part of the error written in the form 

l/G, - T, (0) 

1/q 
=sech q&20! (42) 
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FIG. 3. Amplitude ratio vs angular frequency for one material wire. 
Lower graph is phase angle vs angular frequency for one material wire. 
Solid line is exact solution Eq. (32) ; crosses are approximate solution Eq. 
(17). 

Thus, the maximum error in the amplitude ratio due to 
axial conduction occurs at a frequency w + 0 or 

error-2e-UJY1. (43) 

For example, if Z/.,&,=3.7 the maximum error in the am- 
plitude ratio is 5% relative to the expected amplitude ratio 
for a thermocouple wire of infinite length. 

8. One materlal thermocouple 

The. amplitude ratio ] T(0) 1 at the wire junction for 
the steady-state frequency response derived from E&s.. ( 17) 
and (32) is shown in Fig. 3. This assumes a type B ther- 
mocouple wire with the dimensions listed in Table I. In 
this case, the average material properties listed in Table I 
were used since the ‘one material theory assumes that the 
properties of the thermocouple wire are uniform across the 
junction. It is evident in Fig. 3 that the amplitude ratio 
derived from the approximate expression Eq. (17) is 
nearly identical to the exact derivation Eq. (32). Thus, it 
appears that the conservation of heat flux at the interface 
between the small and large wires of the schematic of Fig. 
1 is of secondary importance. 
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1.0 
0.9 - Type B (D$, = 5, o/o, = .I) 
0.8 - - exact 

t approx 
0.7 - 

0.1 - 

0.0 I I 1 r 1 , , , , 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

x/(W 

FIG. 4. Amplitude ratio vs diitance for one material wire. Solid line 
is derived from Eqs. (24) and (3 1) . Crosses are derived from Fqs. ( 14) 
and (16). 

Also included in Fig. 3 are the numerical computations 
of Stocks.12 These solutions represent explicit llnite differ- 
ence solutions to the one dimensional unsteady heat trans- 
fer equation as shown in Eq. ( 1) . The small deviation of 
the numerical results from the exact solution at low fre- 
quency in Fig. 3 is apparently due to the unsteady charac- 
ter of the numerical results. Similar computations of the 
phase angle Q, for the type B thermocouple are represented 
in Fig. 3. As indicated, the phase angle varies over the 
range O>+> -?r/2 and approaches the lower limit of 
- rr/2 for large frequencies w/w,> 1. 

The spatial variation of the amplitude ratio ] T(x) ] 
derived from Eqs. ( 17) and (32) is plotted in Fig. 4. These 
computations were made at an angular frequency of 
w/w,=O. 1 for the type B thermocouple. As evident in Fig. 
4, the difference between the exact and approximate ex- 
pression is somewhat exaggerated at a very low frequency. 
Nevertheless, the error represented by the approximate so- 
lution is less than 7% over the length of the thermocouple. 
As stated earlier, matching the heat flux at the interface 
between the small and large wire at x = f I in the sche- 
matic of Fig. 1 appears to be of secondary importance in 
relation to providing a continuous temperature profile 
along the wire. 

The amplitude ratio 1 T(0) 1 and phase angle @ are 
also plotted in Fig. 5 from the steady-state frequency re- 
sponse represented by Eqs. (17) and (32). These results 
represent a type B thermocouple with a smaller diameter 
ratio D2/D1 = 2 (see Table I for dimensions). As indicated 
in Fig. 5, the approximate and exact solutions represent 
comparable results in all three cases. Thus, the diameter 
ratio of the large and small wire appears to have little effect 
in the favorable comparison between the approximate and 
exact solutions representing the one material steady-state 
frequency response. 

The approach used for the approximate solution to the 
one material wire (i.e., neglecting heat transfer at the wire- 
support junction) was also used to determine the frequency 
response of a two material wire as shown in Sec. III. The 
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Type B Q/D, = 2) 
- exact 

Type B (D*JD,= 2) 
- exact 
t opprox 

-lo 

-20 

-30 

@ -40 

-60 - 

-70 - 

-80 - 

-50 

-60 

-70 

-80 

-90 7 I 

m-1 ii? m' 
O/O, 

FTG. 5. Amplitude ratio vs angular frequency for one material wire. 
Lower graph is phase angle vs angular frequency for one material wire. 
Solid line is Fq. (32). Crosses are Eq. ( 17). 

FIG. 6. Amplitude ratio vs angular frequency for two material wire. 
Lower graph is phase angle vs angular frequency for two material wire. 
Solid fine is Eq. (40). Crosses are approximate one material solution Eq. 
(17). 

exact solution to the two material wire would require the 
simultaneous and formidable solution of eight equations. 

C. Two material thermocouple 

The amplitude ratio 1 T(0) 1 at the wire junction for 
the steady-state frequency response derived from Eqs. ( 17) 
and (40) is shown in Fig. 6. This assumes a type B ther- 
mocouple wire with the dimensions listed in Table II. In 
this case, the average material properties listed in Table II 
were used for the amplitude of the frequency response de- 
rived from the one material solution of Eq. ( 17). Also 
plotted in Fig. 6 is the amplitude ratio derived from the 
two material solution of Eq. (40). In the latter case, the 
individual material properties listed in Table II were used. 

The steady state amplitude ratio 1 T(0) / for a type T 
thermocouple is plotted in Fig. 7 using Eqs. ( 17) and (40). 
The dimensions and material properties are listed in Table 
II. The average material properties listed in Table II were 
used to compute the amplitude ratio of the frequency re- 
sponse with the one material solution, Eq. ( 17). Also plot- 

I” 

i 

Type T CDs/D, = 5) 
- two moterial 
t one material 
a numerical 

As expected, the amplitude ratio for the steady-state 
frequency response of a type B thermocouple is nearly 
identical with either the one material or two material ap- 
proximate solutions. This is a consequence of roughly 
equal material properties across the junction for type 3 
thermocouples. This plot also validates the two material 
approximate solution Eq. (40) and the values of the 
boundary conditions for T, and Tb substituted from F&s. 
(38) and (39). The same conclusion can be drawn with 
respect to the phase angle @, shown in Fig. 6. 

m-’ mo m’ dq 
FIG. 7. Amplitude ratio YS angular frequency for two material wire. Solid 
line is E!q. (40). Crosses are approximate one material solution Eq. (17). 
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FiG. 8. Phase angle vs angular frequency for two material wire. Solid line 
h Eq. (40). Crosses arc approximate one material solution Eq. (17). 

ted in Fig. 7 is the amplitude ratio derived from the two 
material solution, Eq. (40). In the latter case, the individ- 
ual material properties also listed in Table II were used. 

As indicated in Fig. 7, the amplitude ratio for the ap- 
proximate one material steady-+&e frequency response of 
a type T thermocouple is distinctly different from the two 
material approximate solution. This is a consequence of 
unequal material properties across the junction for the type 
T thermocouple. Also shown in Fig. 7 is a numerical so- 
lution of the second order ordinary differential equation for 
the temperature, Eq. (6). The numerical finite difference 
solution of the boundary value problem of Eq. (6) matches 
both the temperature and heat flux at x=0 and x= f I in 
the schematic of Fig. 2. It is clear from Fig. 7 that the 
approximate two material analytical solution, Eq. (40), is 
in good agreement with the numerical results despite some 
differences at low frequencies o/w1 < 0.04. Similar results 
are indicated for the phase angle @ in Fig. 8. 

The spatial variation of the amplitude ratio ] T(x) ] 
derived from Eqs. ( 17) and (40) is graphed in Fig. 9. 
These computations were made at an angular frequency of 
o/o1 =O. 1 for the type T thermocouple. As evident in Fig. 
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FIG. 9. Amplitude ratio vs distance for two material wire. Solid line 
derived from Eqs. (36a) and (36b). Crosses are approximate one material 
solution Eqs. (14) and (16). 
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mG. 10. Instantaneous temperature data taken with a Pt/6% Rh-Pt/ 
30% Rh (type B) thermocouple. Dimensions: 1=0.075 cm, L=O.15 cm, 
0,=76 pm, and Dz=380 pm. The mean temperature of gas is 1452 K. 
Upper graph is uncompensated data with rms temperature of 33 K about 
mean. Lower graph is compensated data with rms temperature of 284 K. 

9, the two material solution derived from Eq. (40) accu- 
rately represents the features of the asymmetry associated 
with a type T thermocouple. In particular, the relatively 
large resistance to axial heat conduction in the constantan 
wire on ‘the right of the junctiop is reflected in the larger 
values of the amplitude ratio 1 T(x) 1.. Also shown in Fig. 
9 is the approximate one material iolutibn represented by 
Eq. ( 17). In the latter case, the average values for the 
material properties of a type T thermocouple were used as 
listed in Table II. Therefore, one can conclude that for 
thermocouples whose material properties on either side of 
the junction are markedly different, the two material solu- 
tion developed in this paper is a substantial improvement 
in accuracy both in frequency response and in temperature 
distribution along the wire. 

D. Temperature comperisation 

Instantaneous temperature data were recorded in the 
high speed exhaust of a gas burner.13 The uncompensated 
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data in the top graph of Fig. 10 represents one record taken 
with a type 3 thermocouple with the dimensions indicated 
in the caption. The fast Fourier transform was taken of the 
thermocouple signal (top of Fig. IO) and represented by 
Y(o). The Fourier transform of the true gas temperature 
or X(w) is given by 

Y(w) 
X(w) =T(w) 9 

where T(o) is Eq. (32). Thus, the true gas temperature 
(compensated data) is determined by taking the inverse 
transform of X(w) or 

T,(t)=FFT-‘[X(w)]. 
The compensated data or the estimate of the true gas tem- 
perature T,(t) is represented by the bottom graph of Fig. 
10. 
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NOMENCLATURE 
A 
3 
C 
I) 
G 
h 

; 

:/ 
L 
Nu 
Pr 
Q 
Q* 

=constant of integration 
= constant of integration 
=material specific heat (J g-l K-‘) 
= thermocouple wire diameter (cm) 
= 1 +i(o/w,) 
= heat transfer coefficient (J cmv2 s-* K-‘) 
=unit imaginary number ( = u’-- 1) 
= material thermoconductivity 

(J cm-’ s-’ K-‘) 
=gas thermoconductivity (J cm-’ s-’ K-‘) 
=length of small thermocouple wire (cm) 
=length of large thermocouple wire (cm) 
= Nusselt number ( = hD/kf) 
=Prandl number ( =~/a) 
= &?lml2 
=k,q,/kzqz 

Qs = hw%q4 
4 = (G/y)'.' 
Re =Reynolds number f = vD/vf) 
t =time (s) 
T = steady-state frequency response 
Tf =amplitude of periodic gas temperature (K) 
Tt3 =gas temperature (Kf 
TO =mean gas temperature (K) 
L =complex amplitude of periodic wire tempera- 

ture (K) 
Till = focal wire temperature f Kf 
V = gas velocity (cm s-l) 
x = axial distance from center of wire (cm > 

Greek symbols 
a = thermal diffusivity (cm’ s- ’ ) 
Y =a/#, (cm21 
U.f = kinematic viscosity of gas (cm2 s-l ) 
0 = angular frequency (s-l) 
% = natural frequency of wire ( = 4h/pcD) (s - ' ) 
at = phase angle 

il 
=material density (g cme3) 
= dimensionless function 

A2 = dimensionless function 
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